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Abstract. Within the framework of chiral perturbation theory with virtual photons and leptons, we present
an updated analysis of the pionic beta decay including all electromagnetic contributions of order e2p2. We
discuss the extraction of the Cabibbo–Kobayashi–Maskawa matrix element |Vud| from the experimental
data. The method employed here is consistent with the analogous treatment of the K�3 decays and the
determination of |Vus|.

1 Introduction

The determination of the quark mixing matrix VCKM is
presently a major issue in elementary particle physics. The
existence of a direct CP violating phase in the kaon sec-
tor has now been clearly established experimentally [1].
Furthermore, the failure of the CKM matrix elements to
satisfy the constraints expressing the unitarity of VCKM
would with certainty establish the existence of new de-
grees of freedom beyond those present in the three gen-
eration standard model. Since |Vub| � 5 × 10−3 (the lat-
est value obtained by CLEO from inclusive semileptonic
B decays reads |Vub| = (4.08 ± 0.63) × 10−3 [2]) and
given the present accuracies on |Vud| and |Vus|, at the
0.1% and 1% level, respectively, the most stringent test
of the unitarity of the CKM matrix comes from the light
quark sector, where |Vud|2 + |Vus|2 should show compati-
bility with unity with an accuracy better than 0.3%. The
semileptonic Ke3 decay modes are presently considered
to provide the best determination of |Vus| with the cur-
rent value |Vus(Ke3)| = 0.2196 ± 0.0026 [1], while the
most accurate measurement of |Vud| relies on the Ft val-
ues obtained from the super-allowed Fermi transitions of
several 0+ nuclei, |Vud(Ft)| = 0.9740 ± 0.0005 [3]. This
gives |Vud(Ft)|2 + |Vus(Ke3)|2 = 0.9969(17), i.e. a devi-
ation from unity by 2σ. It is of course too early to draw
definite conclusions from this result. On the one hand, the
value of |Vud| obtained from the nuclear beta decays hinges
on the control of the nuclear structure aspects involved in
the evaluation of the radiative corrections to the transi-
tion matrix elements. On the other hand, the extraction
of |Vus| from the Ke3 decay modes relies on a one-loop
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chiral perturbation calculation [4,5] of the relevant form
factor, supplied with a model dependent estimate of the
higher order contributions. The Particle Data Group com-
pilation therefore recommends to double the uncertainty
in the value of |Vud| inferred from the nuclear Fermi tran-
sitions, |Vud(Ft)| = 0.9740±0.0010. In the case of the Ke3
decay mode, other quark model estimates of higher order
corrections lead to a wider range of values than those con-
sidered in [4]. A similar conclusion, based on the analysis
of O(m2

s) tree-level corrections in both FK/Fπ and Ke3
form factors, has also been reached in [6]1. Determina-
tions of |Vud| from other sources than the nuclear Fermi
transitions have therefore been considered. The neutron
beta decay, where radiative corrections can be evaluated
in a more reliable way, suffers from the drawback that
in this case both the vector current and the axial-vector
current contribute. It is thus not enough to measure the
lifetime only, but the asymmetry in the electron emission
angle with respect to the neutron polarization is also re-
quired. A recent measurement of this asymmetry [8] leads
to a value |Vud(nβ)| = 0.9713 ± 0.0013, even smaller than
the one coming from the super-allowed nuclear 0+ → 0+

transitions, and corresponds to |Vud(nβ)|2+|Vus(Ke3)|2 =
0.9916(28), i.e. a 3σ deviation from unitarity.

Another interesting possibility, which shares the ad-
vantages of both Fermi transitions (pure vector transition,
no axial-vector contribution) and neutron beta decay (no
nuclear structure-dependent radiative corrections) is pro-
vided by the beta decay of the charged pion. The difficulty
here lies in the extremely small branching ratio, ∼ 10−8.
Nevertheless, such a measurement is presently being per-

1 The two-loop expressions of the K�3 form factors have been
worked out in [7], but no evaluation of the relevant O(p6) coun-
terterms was given
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formed at PSI by the PIBETA collaboration [9], with the
aim of measuring the branching ratio with 0.5% accuracy.
At this level of precision, radiative corrections have to
be taken into account, and the present paper addresses
this problem. We shall use the effective theory formalism
for processes involving light pseudoscalar mesons, photons
and leptons introduced in [10] which is particularly well
suited for the pionic beta decay. After a brief review of
the main kinematic features of the process (Sect. 2), we
describe the modifications to the structure of the decay
amplitude induced by the radiative corrections in Sect. 3.
In particular, we obtain the corrections of order e2p2 to
the form factor. Section 4 discusses the radiative beta de-
cay rate, which has to be included in order to cancel the
infrared divergences which appear in the radiative correc-
tions to the beta decay amplitude without real photon
emission. Numerical estimates, in particular of the theo-
retical uncertainty in the determination of |Vud(πβ)|, are
presented in Sect. 5. Conclusions are given in Sect. 6, and
two Appendices contain some technical material related
to the calculation of the loop contributions.

2 Kinematics

In the absence of radiative corrections, the invariant am-
plitude of the decay

π+(p+) → π0(p0)e+(pe)νe(pν) (2.1)

reads

M = GFV ∗
udl

µ[f (0)
+ (t)(p++p0)µ+f

(0)
− (t)(p+−p0)µ], (2.2)

where
lµ = ū(pν)γµ(1 − γ5)v(pe). (2.3)

The expression in parentheses corresponds to the matrix
element 〈π0(p0)|ūγµd|π+(p+)〉/√

2. The hadronic form
factors depend on the single variable t = (p+ − p0)2.

The spin-averaged decay distribution ρ(y, z) is a func-
tion of the two variables

z =
2p+ · p0

M2
π+

=
2Eπ0

Mπ+
, y =

2p+ · pe

M2
π+

=
2Ee+

Mπ+
, (2.4)

where Eπ0 (Ee+) is the π0 (positron) energy in the rest
frame of the charged pion. Alternatively, one may also use
two of the Lorentz invariants

t = (p+ − p0)2 = M2
π+(1 + rπ − z),

u = (p+ − pe)2 = M2
π+(1 + re − y),

s = (p0 + pe)2 = M2
π+(y + z − 1), (2.5)

where

re =
m2

e

M2
π+

, rπ =
M2

π0

M2
π+

. (2.6)

Then the Dalitz plot density (without radiative correc-
tions) reads

ρ(0)(y, z) = N [A(0)
1 |f (0)

+ (t)|2 + A
(0)
2 f

(0)
+ (t)f (0)

− (t)

+ A
(0)
3 |f (0)

− (t)|2], (2.7)

with

N =
G2

F|Vud|2M5
π+

64π3 , (2.8)

Γ (π+ → π0e+νe) =
∫
D

dydz ρ(0)(y, z). (2.9)

The kinematical densities are given by

A
(0)
1 (y, z) = 4(z + y − 1)(1 − y) + re(4y + 3z − 3)

− 4rπ + re(rπ − re),

A
(0)
2 (y, z) = 2re(3 − 2y − z + re − rπ),

A
(0)
3 (y, z) = re(1 + rπ − z − re). (2.10)

The physical domain D is defined by

2
√

re ≤ y ≤ 1 + re − rπ,

a(y) − b(y) ≤ z ≤ a(y) + b(y), (2.11)

where

a(y) =
(2 − y)(1 + re + rπ − y)

2(1 + re − y)
,

b(y) =

√
y2 − 4re(1 + re − rπ − y)

2(1 + re − y)
, (2.12)

or, equivalently,

2
√

rπ ≤ z ≤ 1 + rπ − re,

c(z) − d(z) ≤ y ≤ c(z) + d(z), (2.13)

where

c(z) =
(2 − z)(1 + rπ + re − z)

2(1 + rπ − z)
,

d(z) =
√

z2 − 4rπ(1 + rπ − re − z)
2(1 + rπ − z)

. (2.14)

3 Pionic beta decay and electromagnetism

The presence of the electromagnetic interaction does not
change the structure of the invariant amplitude (2.2) in
terms of the form factors, but changes the form factors
themselves [5]:

M[f (0)
+ (t), f (0)

− (t)] → M[F+(t, u), F−(t, u)]. (3.1)

The full form factors F±(t, u) contain the effects of vir-
tual photon exchange and the contributions of the ap-
propriate electromagnetic counterterms. These quantities
depend also on a second kinematical variable as they can-
not be interpreted anymore as matrix elements of a quark
current between hadronic states.

Photon loop diagrams contributing to the weak vertex
function are shown in Fig. 1. In particular, it is the second
diagram which introduces the dependence on the second
kinematical variable u.
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Fig. 1. Photon loop diagrams (wave function renormalization
diagrams are not shown). The black dots denote (scalar) QED
vertices, the box denotes the vertex proportional to GF

The following observation considerably simplifies the
further analysis of the pionic beta decay: the form factor
F−(t, u) is proportional to the isospin suppressed mass dif-
ference M2

π+ − M2
π0 = 2e2ZF 2

0 . In addition, the kinemat-
ical densities A2 and A3 multiplying F− in the formula
for the Dalitz plot density (2.7) are proportional to the
small quantity re � 10−5. Therefore, these contributions
can safely be neglected and we may restrict ourselves to
the discussion of F+.

The form factor F+(t, u) contains infrared singulari-
ties due to low-momentum virtual photons. They can be
regularized by introducing a small photon mass Mγ . The
dependence on an infrared cutoff reflects the fact that
F+(t, u) cannot be interpreted as an observable quantity
but has to be combined with appropriate contributions
from real photon emission to arrive at an infrared-finite
result.

It is convenient to decompose F+(t, u) into a structure-
dependent effective form factor f+(t), and a remaining

part containing in particular the universal long distance
corrections. Confining ourselves to electromagnetic contri-
butions of order α, the full form factor is given by

F+(t, u) =
[
1 +

α

4π
Γ (u, m2

e, M
2
π+ ; Mγ)

]
f+(t). (3.2)

Expressed in terms of the functions Γc, Γ1, Γ2 defined in
[5], Γ can be written as

Γ (u, m2
e, M

2
π+ ; Mγ) = Γc(u, m2

e, M
2
π+ ; Mγ)

+ Γ1(u, m2
e, M

2
π+)

+ Γ2(u, m2
e, M

2
π+). (3.3)

The explicit expressions of the functions Γc, Γ1, Γ2 can
be found in Appendix A. Γc(u, m2

e, M
2
π+ ; Mγ) corresponds

to the long distance component of the loop amplitudes
which generates infrared and Coulomb singularities. (In
our case, the Coulomb singularity lies outside of the phys-
ical region.) The term Γ1(u, m2

e, M
2
π+) + Γ2(u, m2

e, M
2
π+)

represents the remaining non-local photon loop contribu-
tion.

Note that the decomposition in (3.2) is analogous to
the one chosen in [5] for the analysis of the K+

e3 decay.
With this choice, the effective form factor depends only
on the single variable t. It is convenient [5] to write it as
the sum of two terms,

f+(t) = f̃+(t) + f+|e2p2 . (3.4)

The first one contains the pure QCD contribution (in
principle to any order in the chiral expansion) plus the
electromagnetic contributions originating from the non-
derivative Lagrangian

Le2p0 = e2F 4
0 Z〈Qem

L Qem
R 〉. (3.5)

The explicit form of this part is given by the formula

f̃+(t) = 1 + 2Hπ+π0(t) + HK+K0(t) + . . . , (3.6)

where the ellipses indicate contributions of higher order
in the chiral expansion. The meson loop function HPQ(t)
[11,12] is displayed in Appendix B.

The second term in (3.4) represents the local effects of
virtual photon exchange of order e2p2,

f+|e2p2 = 4πα

[
2Kr

12(µ) − 2
3
X1 − 1

2
X̃r

6 (µ) (3.7)

− 1
32π2

(
3 + log

m2
e

M2
π+

+ 3 log
M2

π+

µ2

)]
.

The symbol Kr
12(µ) denotes the renormalized (scale de-

pendent) part of the coupling constant K12 introduced by
Urech [13] in the effective Lagrangian Le2p2 describing the
interaction of dynamical photons with hadronic degrees of
freedom [14,15]. The coupling constants X1, X6 enter the
game once also virtual leptons are taken into account [10].
The coupling constant X̃r

6 (µ) is obtained from Xr
6 (µ) after

the subtraction of the short-distance contribution [5],

Xr
6 (µ) = XSD

6 + X̃r
6 (µ), (3.8)
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where

e2XSD
6 = − e2

4π2 log
M2

Z

M2
ρ

= 1 − SEW(Mρ, MZ), (3.9)

which defines [16] also the short-distance enhancement
factor SEW(Mρ, MZ) to leading order.

In order to arrive at an infrared-finite (observable) re-
sult, also the emission of a real photon has to be taken into
account. The radiative amplitude Mγ can be expanded in
powers of the photon energy Eγ ,

Mγ = Mγ
(−1) + Mγ

(0) + . . . , (3.10)

where
Mγ

(n) ∼ (Eγ)n. (3.11)

Gauge invariance relates Mγ
(−1) and Mγ

(0) to the non-
radiative amplitude M, and thus to the full form factor
F+(t, u). Upon taking the square modulus and summing
over spins, the radiative amplitude generates a correction
ργ(y, z) to the Dalitz plot density of (2.7). The observable
distribution is now the sum

ρ(y, z) = ρ(0)(y, z) + ργ(y, z). (3.12)

Both terms on the right hand side of this equation depend
on the full form factor F+ and contain infrared divergences
(from virtual or real soft photons). Upon combining them,
the observable density can be written in terms of a new
kinematical density A1 [5], and the effective form factors
f+(t) defined in (3.2),

ρ(y, z) = NSEW(Mρ, MZ)A1|f+(t)|2, (3.13)

where we have pulled out the short-distance enhancement
factor. The kinematical density A1 is given by [5]

A1(y, z) = A
(0)
1 (y, z)

[
1 + ∆IR(y, z)

]
+ ∆IB

1 (y, z). (3.14)

The function ∆IR(y, z) arises by combining the contri-
butions from |Mγ

(−1)|2 and Γ (u, m2
e, M

2
π+ ; Mγ). Although

the individual contributions contain infrared divergences,
the sum is finite. The factor ∆IB

1 (y, z) originates from av-
eraging the remaining terms of |Mγ |2 [see (3.10)] and
are infrared-finite. Note that both ∆IR(y, z) and ∆IB

1 (y, z)
are sensitive to the treatment of real photon emission in
the experiment. Details on these corrections are given in
Sect. 4.

Let us finally note that, in principle, the radiative am-
plitude generates new terms in the density, proportional to
derivatives of form factors. These terms would only arise
at order e2p4 and higher in chiral perturbation theory, and
therefore we have suppressed them in (3.13).

4 Real photon radiation

We present here in detail a possible treatment of the con-
tribution of the real photon emission process

π+(p+) → π0(p0)e+(pe)νe(pν)γ(pγ), (4.1)

in complete analogy with the procedure proposed in [17]
and [5] for the analysis of the K+

e3 decay. To this end we
define the kinematical variable

x = (pν + pγ)2 = (p+ − p0 − pe)2. (4.2)

For the analysis of the experimental data, we suggest to
accept all pion and charged lepton energies within the
whole πe3 Dalitz plot D given by (2.11) and (2.13), respec-
tively, and all kinematically allowed values of the Lorentz
invariant x defined in (4.2). (The variable x determines
the angle between the momentum of the neutral pion and
the positron momentum for given energies Eπ0 , Ee+ .) This
translates into the distribution

ργ(y, z) =
Mπ+

212π5

xmax∫
M2

γ

dx

× 1
2π

∫
d3pν

p0
ν

d3pγ

p0
γ

δ(4)(p+ − p0 − pe − pν − pγ)

×
∑
pol

|Mγ |2, (4.3)

with

xmax = M2
π+

{
1 + rπ + re − y − z

+
1
2
[yz +

√
(y2 − 4re)(z2 − 4rπ)]

}
. (4.4)

In (4.3) we have extended the integration over the whole
range of the invariant mass of the unobserved ν�γ system.
The integrals occurring in (4.3) have the general form [17]

Im,n(p1, p2; P, Mγ) (4.5)

:=
1
2π

∫
d3q

q0

d3k

k0

δ(4)(P − q − k)
(p1 · k + M2

γ/2)m(p2 · k + M2
γ/2)n

.

The results for these integrals in the limit Mγ = 0 can be
found in the Appendix of [17]. Using the definition (4.5),
the radiative decay distribution (4.3) can be written as [17]

ργ(y, z) =
α

π

[
ρ(0)(y, z)I0(y, z; Mγ) (4.6)

+
G2

F|Vud|2|f+|2Mπ+

32π3

×
xmax∫
0

dx
∑
m,n

cm,nIm,n(pe, p+; p+ − p0 − pe, 0)

]
,

where the infrared divergences are now confined to2

I0(y, z; Mγ)

=
1
4

xmax∫
M2

γ

dx
[

− 2p+ · peI1,1(pe, −p+; p+ − p0 − pe; Mγ)

− M2
π+I0,2(pe, −p+; p+ − p0 − pe; Mγ)

−m2
eI2,0(pe, −p+; p+ − p0 − pe; Mγ)

]
. (4.7)

2 The right hand side of the corresponding expression (6.7)
in [5] should be multiplied by 1/4
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The explicit form of the function I0 can be found in (27)
of [17]. (Of course, the appropriate substitutions K → π+

and π → π0 have to be performed.) The coefficients cm,n

were given in (19) of [17]. Note however the misprint for
the values of c−1,0 and c1,−2 (see Erratum of [17]). As we
are neglecting the contribution of the form factor f−, it is
sufficient to consider these coefficients for ξ = 0.

The function ∆IR introduced in (3.14) can now be re-
lated to I0 by

∆IR(y, z) =
α

π

[
I0(y, z; Mγ) +

1
2
Γ (u, m2

e, M
2
π+ ; Mγ)

]
.

(4.8)
An analytic expression of the integral occurring in (4.6)

was given in Appendix B of [18] in terms of the quanti-
ties Ui:

xmax∫
0

dx
∑
m,n

cm,nIm,n =
7∑

i=0

Ui. (4.9)

As already noticed in [5], the quantity J9(i) given in (A9)
of [18] (which is needed for the evaluation of U7) contains
two mistakes: the plus-sign in the last line of (A9) should
be replaced by a minus-sign, and |βmax

i | at the end of the
first line of (A9) should simply read βmax

i .
The function ∆IB

1 introduced in (3.14) can now be ob-
tained as

∆IB
1 =

2α

πM4
π+

7∑
i=0

Ui

∣∣∣
ξ=0

. (4.10)

5 Numerical analysis

In the kinematically relevant range,

m2
e ≤ t ≤ (Mπ+ − Mπ0)2, (5.1)

the t-dependence of the effective form factor can be ap-
proximated by the linear expansion

f+(t) = f+(0)
(

1 +
t

M2
π±

λ+

)
(5.2)

with an excellent degree of accuracy. The observable decay
rate

Γ (πe3(γ)) := Γ (πe3) + Γ (πe3γ) (5.3)

can now be written as

Γ (πe3(γ)) = NSEW(Mρ, MZ)|f+(0)|2I(λ+), (5.4)

where

I(λ+) =
∫
D

dydzA1(y, z)
(

1 +
t

M2
π±

λ+

)2

= a0 + a1λ+ + a2λ
2
+. (5.5)

In order to extract |Vud| we have to provide a theoretical
estimate of the form factor at t = 0 and the phase-space
integral.

5.1 Numerical estimate of f+(0)

In the isospin limit, f+(0) coincides with the vector form
factor at zero momentum transfer, and is thus equal to 1,
due to the conservation of the charged isospin current. In
the real world, all deviations from this value are therefore
isospin suppressed.

At one-loop accuracy, the quantity f̃+(0) obtained from
the formula in (3.6) is unambiguously determined in terms
of the masses of the pseudoscalar mesons. It deviates from
1 by a tiny term quadratic in the isospin-breaking param-
eters mu − md and e2 [19],

f̃+(0) = 1 − 7 × 10−6. (5.6)

Further higher order contributions to f̃+(0) are negligibly
small because of the aforementioned isospin suppression.

Therefore, the theoretical prediction of f+(0) requires
a reliable estimate of the purely electromagnetic contri-
bution f+|e2p2 . A numerical value for the coupling con-
stant Kr

12(µ) entering in (3.7) has been given by Moussal-
lam [20]:

Kr
12(Mρ) = (−4.0 ± 0.5) × 10−3. (5.7)

For the (unknown) “leptonic” constants we resort to the
usual bounds suggested by dimensional analysis,

|X1|, |X̃r
6 (Mρ)| ≤ 6.3 × 10−3. (5.8)

Using these numerical values, (3.7) implies

f+|e2p2 = (4.6 ± 0.1 ± 0.4 ± 0.3) × 10−3

= (4.6 ± 0.5) × 10−3. (5.9)

The three errors in the first line correspond to the un-
certainties of Kr

12(Mρ), X1 and X̃r
6 (Mρ), respectively. For

the final value, they have been added in quadrature.
Despite the poor present knowledge of the “leptonic”

constants, the uncertainty in the electromagnetic sector
affects the final result for the effective form factor at zero
momentum transfer by only ±0.05%,

f+(0) = 1.0046 ± 0.0005. (5.10)

5.2 The phase-space factor

The theoretical prediction for the slope parameter

λ+ = M2
π±

df+(t)
dt

∣∣∣∣
t=0

. (5.11)

is determined by the size of the low-energy constant Lr
9.

With
Lr

9(Mρ) = (6.9 ± 0.7) × 10−3 (5.12)

we find
λ+ = 0.037 ± 0.003. (5.13)

The numerical coefficients a0,1,2 entering in the phase-
space expression (5.5) are shown in Table 1. Because of
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Table 1. Coefficients entering the phase-space integral

a0 a1 a2

α = 0 7.375 × 10−8 4.999 × 10−11 1.227 × 10−14

α �= 0 7.383 × 10−8 5.011 × 10−11 1.230 × 10−14

the smallness of the coefficients a1,2, the final value of
the Dalitz plot integral I(λ+) is practically insensitive to
the exact size of the slope parameter and simply given by
the parameter a0. The inclusion of radiative corrections as
described in Sect. 4 increases the value of I(λ+) by only
0.1%.

We have also evaluated numerically a0 in the case cor-
responding to the fully inclusive one-photon decay (in-
cluding the whole four-particle phase space), finding no
appreciable difference from the result in Table 1.

5.3 Determination of |Vud|
The Kobayashi–Maskawa matrix element |Vud| can be ex-
tracted from the πe3 decay parameters by

|Vud| =
8π3/2Γ (πe3(γ))1/2

GFM
5/2
π+ SEW(Mρ, MZ)1/2|f+(0)|I(λ+)1/2

.

(5.14)
We recall at this point that, according to our convention
[10], the Fermi coupling constant GF appearing in (5.14)
has to be identified with the muon decay constant. For the
short-distance enhancement factor we use the value [16]

SEW(Mρ, MZ) = 1.0232, (5.15)

where leading logarithmic and QCD corrections have been
included. With the present π± mean life time [1],

τπ± = (2.6033 ± 0.0005) × 10−8 s, (5.16)

we finally obtain the relation

|Vud| = 9600.8
√

BR(πe3(γ))
/

|f+(0)|, (5.17)

with an associated uncertainty

∆|Vud| = |Vud|
(

±1
2

∆BR
BR

± ∆f+(0)
f+(0)

)
. (5.18)

The present experimental precision for the branching
ratio of the pionic beta decay cannot compete yet with the
very small theoretical uncertainty in the determination of
Vud generated by (5.10). Using the latest value given by
the Particle Data Group (PDG 2002) [1],

BR = (1.025 ± 0.034) × 10−8, (5.19)

together with (5.10), we find

|Vud| = 0.9675 ± 0.0160(exp.) ± 0.0005(theor.)
= 0.9675 ± 0.0161. (5.20)

However, a substantial improvement of the experimen-
tal accuracy is to be expected in the near future. The PI-
BETA experiment [9] aims at measuring the branching
ratio with a precision of about 0.5% in its current phase.
Inserting the present preliminary result obtained by the
PIBETA Collaboration [9],

BR = (1.044± 0.007(stat.)± 0.015(syst.))× 10−8, (5.21)

we find

|Vud| = 0.9765 ± 0.0080(exp.) ± 0.0005(theor.)
= 0.9765 ± 0.0080, (5.22)

to be compared with the current PDG value [1],

|Vud| = 0.9735 ± 0.0008. (5.23)

6 Conclusions

The present work was devoted to the study of the pionic
beta decay at the one-loop level, with the order α radia-
tive corrections to the amplitude included. We have been
working within the framework of the effective low-energy
theory of the standard model. Our main results in this
respect are given by (3.6) and (3.7).

We have discussed the influence of the various correc-
tions on the determination of |Vud| from a high-precision
measurement of the pionic beta decay rate. As far as
strong-interaction corrections are concerned, the situation
is most advantageous, since the Ademollo–Gatto theorem
requires the deviation of f+(0) from its value 1 in the
isospin symmetric limit to be quadratic in the meson mass
differences M2

π+ − M2
π0 and M2

K+ − M2
K0 . This results in

a very tiny correction at one loop, ∼ −7×10−6, and leads
one to the expectation that higher order strong-interaction
corrections will not disturb this nice picture3.

Electromagnetic corrections induced by the exchange
of virtual photons involve several unknown counterterms.
However, naive dimensional analysis indicates that their
contribution also remains small. For instance, they af-
fect the extraction of |Vud| at the 0.05% level only. How-
ever, they represent the main source of theoretical error
at present. Putting together the short-distance corrections
(SEW) and the long-distance corrections (to form factor
and phase space), we estimate an overall radiative correc-
tion to the partial width of (+3.34± 0.10)% which is very
close to other estimates [21,22]. We stress that our number
has been obtained within a completely model-independent
framework for the long-distance corrections.

Thus, the pionic beta decay is very close to a theorist’s
paradise, and a very precise prediction for its branching
ratio can be obtained. It remains to be seen whether the
experimental progresses will eventually be able to reach a
comparable precision, and thus provide a very clean and
accurate determination of the Cabibbo angle.

3 The situation here is very different from the case of the K�3

modes, where one encounters O[(M2
K −M2

π)2] counterterm con-
tributions, which can have an influence on the determination
of |Vus|; see e.g. the discussion in [6]
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Appendix

A Photon loop functions

The photon loop contributions to the πe3 form factor de-
pend on the electron mass me, the charged pion mass Mπ+

and the relativistic invariant u = (p+ − pe)2. In order to
express the loop functions in a compact way, it is useful
to define the quantity

X =
y −

√
y2 − 4re

2
√

re
, (A.1)

where y has been defined in (2.4). In terms of re, X, y and
the dilogarithm

Li2(x) = −
∫ 1

0

dt

t
log(1 − xt), (A.2)

the functions contributing to Γ (u, m2
e, M

2
π+ ; Mγ) are given

by [5]

Γc(u, m2
e, M

2
π+ ; Mγ) = 2M2

π+yC(u, m2
e, M

2
π+)

+ 2 log
Mπ+me

M2
γ

(
1 +

Xy log X√
re(1 − X2)

)
, (A.3)

C(u, m2
e, M

2) =
1

meMπ+

X

1 − X2

×
[
−1

2
log2 X + 2 log X log(1 − X2) − π2

6
+

1
8

log2 re

+ Li2(X2) + Li2

(
1 − X√

re

)
+ Li2(1 − X

√
re)
]

, (A.4)

Γ1(u, m2
e, M

2
π+) =

1
2
[− ln re + (4 − 3y)F(u, m2

e, M
2
π+)]

Γ2(u, m2
e, M

2
π+) =

1
2

(
1 − m2

e

u

)
× [−F(u, m2

e, M
2)(1 − re) + ln re]

− 1
2
(3 − y)F(u, m2

e, M
2
π+), (A.5)

and
F(u, m2

e, M
2
π+) =

2√
re

X

1 − X2 lnX. (A.6)

B Meson loop functions

The loop function HPQ(t) [11,12] is given by

HPQ(t) =
1

F 2
0

[
hr

PQ(t, µ) +
2
3
tLr

9(µ)
]

, (B.1)

where

hr
PQ(t, µ) =

1
12t

λ(t, M2
P , M2

Q)J̄PQ(t)

+
1

18(4π)2
(t − 3ΣPQ)

− 1
12

{
2ΣPQ − t

∆PQ
[AP (µ) − AQ(µ)]

− 2[AP (µ) + AQ(µ)]

}
, (B.2)

with

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz), (B.3)
ΣPQ = M2

P + M2
Q, ∆PQ = M2

P − M2
Q, (B.4)

AP (µ) = − M2
P

(4π)2
log

M2
P

µ2 , (B.5)

and

J̄PQ(t) =
1

32π2

[
2 +

∆PQ

t
log

M2
Q

M2
P

− ΣPQ

∆PQ
log

M2
Q

M2
P

− λ1/2(t, M2
P , M2

Q)
t

× log

(
[t + λ1/2(t, M2

P , M2
Q)]2 − ∆2

PQ

[t − λ1/2(t, M2
P , M2

Q)]2 − ∆2
PQ

)]
. (B.6)

The quantity HPQ(0) appearing in the evaluation of f+(0)
is given by [11]

HPQ(0) = − 1
128π2F 2

0
(M2

P + M2
Q)h0

(
M2

P

M2
Q

)
,

h0(x) = 1 +
2x

1 − x2 log x. (B.7)

The chiral one-loop corrections comply with the Ademollo-
Gatto theorem through the property

HPQ(0) = − 1
192π2

∆2
PQ

F 2
0 ΣPQ

+ · · · (B.8)

for ∆PQ � ΣPQ. For the theoretical determination of the
slope parameter we need the derivative of the function
HPQ(t) at t = 0 given by [11]

dHPQ(t)
dt

∣∣∣∣
t=0

=
2

3F 2
0

{
Lr

9(µ) − 1
128π2 log

MP MQ

µ2

}
− 1

192π2F 2
0

h1

(
M2

P

M2
Q

)
,

h1(x) =
x3 − 3x2 − 3x + 1

2(x − 1)2
log x

+
1
2

(
x + 1
x − 1

)2

− 1
3
. (B.9)
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